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A New Blocking Method

A new blocking method with nice theoretical properties

Blocking: create strata and then randomize within strata

Review some results on blocking, post-stratification, and
model adjustment of experiments

Some analytical benefits for blocking, but the main one is
transparency and minimizing fishing
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A New Blocking Method

The method minimizes the Maximum Within-Block Distance

Ensures good covariate balance by design

It is fast: polynomial time

Works for any number of treatments and any minimum
number of observations per block

Better balance than greedy methods

Can estimate conditional variances
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Covariate imbalance in randomized experiments

PROBLEM: In finite samples, there is a probability of bad
covariate balance between treatment groups

Bad imbalance on important covariates:

→ Imprecise estimates of treatment effects

→ Conditional bias
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Some theoretical results about blocking

Blocking cannot hurt the precision of the estimator:

if no worse than random matching
if sample from an infinite super population

Post-Stratification and regression adjustment can decrease the
precision of the estimator

Blocking may increase the estimated variance. But this is
specific to the estimator used (degrees of freedom). e.g.,
randomization inference solves the problem.
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Adjustment and covariate imbalance

Regression adjustment [Freedman, 2008, Lin, 2012]

Post-stratification [Miratrix, Sekhon, and Yu, 2013]:

Group similar units together after after randomization
SATE/PATE results good; ex post problems arise
Data mining concerns

Re-randomization [Morgan and Rubin, 2012]:

Repeat randomly assigning treatments until covariate balance
is “acceptable”

LESSON: design the randomization to build in adjustment
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Some Current blocking approaches

Matched-pairs blocking: Pair “most-similar” units together.
For each pair, randomly assign one unit to treatment, one to
control [Imai, 2008]

Optimal Multivariate Matching Before
Randomization [Greevy, Lu, Silber, and Rosenbaum, 2004]

Optimal-greedy blocking [Moore, 2012]
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Matched-Pairs

No efficient way to extend approach to more than two
treatment categories

Fixed block sizes (2 units): design may pair units from
different clusters

Cannot estimate conditional variances [Imbens, 2011]

Difficulty with treatment effect heterogeneity

Worse problems with some tests—e.g., rank sum
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Blocking by minimizing the Maximum Within-Block
Distance (MWBD)

Experiment with n units and r treatment categories

Select a threshold t∗ ≥ r for a minimum number of units to
be contained in a block

Block units so that each block contains at least t∗ units, and
so that the maximum distance between any two units within a
block—the MWBD—is minimized

Threshold t∗: Allows designs with multiple treatment
categories, multiple replications of treatments within a block

Optimal blocking



Motivation
Blocking and graph theory

Approximately optimal blocking algorithm
Estimation of treatment effects

References

A simple example:

Threshold t∗ = 2. Distance = Mahalanobis distance.
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A simple example:
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Optimal blocking and approximately optimal blocking

For all blockings that contain at least t∗ units:

Let λ denote the smallest MWBD achievable by such a
blocking—any blocking that meets this bound is called an
optimal blocking

Finding an optimal blocking is an NP-hard problem—feasible
to find in small experiments, may not be feasible in large
experiments [Hochbaum and Shmoys, 1986]

We now show that finding a blocking with MWBD ≤ 4λ is
possible in polynomial time
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Viewing experimental units as a graph

Use an idea from Paul Rosenbaum [1989]: Matching problems
can be viewed as graph theory partitioning problems

Experimental units are vertices in a graph

An edge is drawn between two units if they can be placed in
the same block

Edge-weights are some measure of distance between
pretreatment covariates (e.g. Mahalanobis distance)
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Viewing experimental units as a graph: In pictures

Distance = Mahalanobis distance.
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Viewing experimental units as a graph: In pictures

Distance = Mahalanobis distance.
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Viewing experimental units as a graph: In pictures

Distance = Mahalanobis distance.
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Notation:

A graph G is defined by its vertex set V and its edge set E :
G = (V ,E )

Vertices in V denoted by {i}; n units → n vertices in V

Edges in E are denoted by (i , j)

A complete graph has an edge (i , j) ∈ E between every two

distinct vertices {i}, {j} ∈ V ; n(n−1)
2 edges overall

The weight of edge (i , j) ∈ E is denoted by wij : at most
n(n−1)

2 distinct values of wij
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Note about edge weights

If our concern is covariate balance, natural choices for edge
weights measure distance between block covariates—e.g.,
Mahalanobis, L1, L2, distances

Our method only requires weights to satisfy the triangle
inequality: for any distinct vertices {i}, {j}, {k},

wik + wkj ≥ wij
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A simple example:

Threshold t∗ = 2. Distance = Mahalanobis distance.
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Optimal blocking as a graph partitioning problem

A partition of V is a division of V into disjoint blocks of
vertices (V1,V2, . . . ,V`)

Blocking of units ↔ Partition of a graph:
Two units are in the same block of the blocking if and only if
their corresponding units are in the same block of the partition

Optimal blocking problems are optimal partitioning problems:
we want to find a partition (V ∗

1 ,V
∗
2 , . . . ,V

∗
`∗) with |V ∗

j | ≥ t∗

that minimizes the maximum within-block edge weight
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Bottleneck subgraphs

Bottleneck subgraphs helpful for solving partitioning problems

Define the bottleneck subgraph for maximum weight of w as
the graph that has (i , j) ∈ Ew if and only if wij ≤ w

At most n(n−1)
2 different edge weights wij → At most n(n−1)

2
different bottleneck subgraphs

All points within a block of our approximately optimal
blocking are connected by some path of edges in a bottleneck
subgraph; used to show approximate optimality
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Bottleneck subgraph: In pictures

Complete graph
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Bottleneck subgraph: In pictures

Bottleneck subgraph of weight 5
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Bottleneck subgraph: In pictures

Bottleneck subgraph of weight 3
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Bottleneck subgraph: In pictures

Bottleneck subgraph of weight 3
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Approximate algorithm outline:

Find the bottleneck subgraph of “appropriate” weight

can use k-nearest neighbor graph

Select block centers that are “just far enough apart”

Grow from these block centers to obtain an approximately
optimal partition—and thus, an approximately optimal
blocking

Approach closely follows Hochbaum and Shmoys [1986]
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Algorithm step-by-step: Find bottleneck graph

Find smallest weight
threshold λ− such that each
vertex in the corresponding
bottleneck subgraph is
connected to at least t∗ − 1
edges.

Can show that λ− ≤ λ,
where λ is the smallest
MWBD possible.

Bottleneck subgraph can be
constructed in polynomial
time.

t∗ = 2
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Algorithm step-by-step: Find block centers

Find a set of vertices—block
centers—such that:

There is no path of two
edges or less connecting
any of the vertices in the
set.
For any vertex not in the
set, there is a path of two
edges or less that
connects that vertex to
one in the set.

Any set will do, but some
choices of centers are better.
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Algorithm step-by-step: Grow from block centers

Form blocks comprised of a
block center plus any
vertices connected to that
center by a single edge.

The way our block centers
were chosen (no path of two
edges connects two block
centers), these blocks will
not overlap.

At this point, these blocks
contain at least t∗ units (by
edge connection criterion).
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Algorithm step-by-step: Assign all unassigned vertices

For each unassigned vertex,
find the closest block center.
Add that vertex to the
center’s corresponding
block.

The way our block centers
were chosen, all unassigned
vertices are at most a path
of two edges away from a
block center.
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Our blocking

Our approximate algorithm came up with the following blocking:
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A simple example:

Threshold t∗ = 2. Dissimilarity = Mahalanobis distance.
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Sketch of proof of approximate optimality

Algorithm is guaranteed to obtain a blocking with MWBD
≤ 4λ, though does much better than that in practice.

Sketch of proof:

Each vertex is at most a path of two edges away from a block
center =⇒
In the worst case: two vertices {i}, {j} in the same block can
be connected by a path of four edges in the bottleneck
subgraph (two from vertex {i} to the block center, two from
the block center to vertex {j}).

Optimal blocking



Motivation
Blocking and graph theory

Approximately optimal blocking algorithm
Estimation of treatment effects

References

Sketch of proof of approximate optimality

Algorithm is guaranteed to obtain a blocking with MWBD
≤ 4λ, though does much better than that in practice.

Sketch of proof:

Each vertex is at most a path of two edges away from a block
center =⇒
In the worst case: two vertices {i}, {j} in the same block can
be connected by a path of four edges in the bottleneck
subgraph (two from vertex {i} to the block center, two from
the block center to vertex {j}).
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Sketch of proof cont’d

Each vertex is at most a path of two edges away from a block
center =⇒
In the worst case: two vertices {i}, {j} in the same block can
be connected by a path of four edges in the bottleneck
subgraph (two from vertex {i} to the block center, two from
the block center to vertex {j}).

In worst case: (i , k1), (k1, k2), (k2, k3), (k3, j) is a path of four
edges connecting {i} to {j}.
Each edge has weight at most λ− =⇒
The corresponding edge weights satisfy:

wik1 + wk1k2 + wk2k3 + wk3j ≤ 4λ− ≤ 4λ.
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Sketch of proof cont’d

Since edge weights satisfy the triangle inequality:

wik + wkj ≥ wij

it follows that

wij ≤ wik1 + wk1k2 + wk2k3 + wk3j ≤ 4λ− ≤ 4λ.

That is, every edge joining two vertices within the same block
has weight ≤ 4λ.

The maximum within-block distance of the approximately
optimal blocking is ≤ 4λ.

QED
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Sketch of proof cont’d

Since edge weights satisfy the triangle inequality:

wik + wkj ≥ wij

it follows that

wij ≤ wik1 + wk1k2 + wk2k3 + wk3j ≤ 4λ− ≤ 4λ.

That is, every edge joining two vertices within the same block
has weight ≤ 4λ.

The maximum within-block distance of the approximately
optimal blocking is ≤ 4λ.

QED

Optimal blocking



Motivation
Blocking and graph theory

Approximately optimal blocking algorithm
Estimation of treatment effects

References

Some final remarks about algorithm:

Algorithm does not contain any inherently random
components.

Quick, local changes to the approximately optimal blocking
may improve the blocking. (e.g., divide large blocks into
smaller blocks, swap units between blocks)
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Neyman-Rubin potential outcomes model

The Neyman-Rubin potential outcomes framework assumes
the following model for response [Splawa-Neyman,
Dabrowska, and Speed, 1990, Rubin, 1974]:

Ykc = ykc1Tkc1 + ykc2Tkc2 + . . .+ ykcrTkcr .

Ykc : Observed response of kth unit in block c .

ykct : Potential outcome of the unit under treatment t.

Tkct : Treatment indicators. Tkct = 1 if the unit receives
treatment t, Tkct = 0 otherwise.
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Parameters of interest and estimators

Parameters of interest: Sample average treatment effect of
treatment s relative to treatment t (SATEst):

SATEst =
b∑

c=1

nc∑
k=1

ykcs − ykct
n

Two unbiased estimators of SATEst are the difference-in-means
estimator and the the Horvitz-Thompson estimator.

δ̂st,diff ≡
b∑

c=1

nc
n

nc∑
k=1

(
ykcsTkcs

#Tcs
− ykctTkct

#Tct

)
,

δ̂st,HT ≡
b∑

c=1

nc
n

nc∑
k=1

(
ykcsTkcs

nc/r
− ykctTkct

nc/r

)
.

Assume complete randomization of treatment, r divides nc .
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Variance of estimators

Var(δ̂st,diff) = Var(δ̂st,HT)

=
b∑

c=1

n2
c

n2

(
r − 1

nc − 1
(σ2

cs + σ2
ct) + 2

γcst
nc − 1

)

µcs =
1

nc

nc∑
k=1

ykcs

σ2
cs =

1

nc

nc∑
k=1

(ykcs − µcs)2

γcst =
1

nc

nc∑
k=1

(ykcs − µcs)(ykct − µct)
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Variance of estimators

Var(δ̂st,diff) = Var(δ̂st,HT)

=
b∑

c=1

n2
c

n2

(
r − 1

nc − 1
(σ2

cs + σ2
ct) + 2

γcst
nc − 1

)

Note: σ2
cs and σ2

ct are estimable, γcst not directly estimable.

Conservative estimate:

V̂ar =
b∑

c=1

n2
c

n2

(
2(r − 1)

nc − 1
(σ̂2

cs + σ̂2
ct)

)
Small differences for more general treatment assignments.
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When does blocking help?

Blocking vs. completely randomized treatment assignment (no
blocking): which estimates of SATEst have lower variance?

Blocking helps if and only if:

b∑
c=1

n2
c

[(
(r − 1)(σ2

s + σ2
t ) + 2γst∑

n2
c(n − 1)

)
−
(

(r − 1)(σ2
cs + σ2

ct) + 2γcst
n2(nc − 1)

)]
≥ 0

Intuitive to make σ2
cs , σ

2
ct small w.r.t. σ2

s , σ
2
t , but other

blocking designs may also improve treatment effect estimates.
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Can blocking hurt?

When blocking is completely randomized:

E

[
b∑

c=1

n2
c

(
(r − 1)(σ2

cs + σ2
ct) + 2γcst

n2(nc − 1)

)]

=
b∑

c=1

n2
c

(
(r − 1)(σ2

s + σ2
t ) + 2γst∑

n2
c(n − 1)

)
Blocked variance = Completely randomized variance

Any improvement to completely random blocking →
Reduced variance in treatment effect estimates.
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Future Work

Apply graph partitioning techniques to other statistical
problems:

Clustering—alternative to k-means.
Apply to matching problems.
Other problems in nonparametric statistics.

Improve theoretic results of algorithm.
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