Improving Experiments by Optimal Blocking: Minimizing the Maximum Within-block Distance

Michael J. Higgins
Jasjeet Sekhon

April 12, 2014
EGAP XI
A New Blocking Method

A new blocking method with nice theoretical properties

- Blocking: create strata and then randomize within strata

- Review some results on blocking, post-stratification, and model adjustment of experiments

- Some analytical benefits for blocking, but the main one is transparency and minimizing fishing
A New Blocking Method

The method minimizes the **Maximum Within-Block Distance**

- Ensures good covariate balance by design
- It is fast: polynomial time
- Works for any number of treatments and any minimum number of observations per block
- Better balance than greedy methods
- Can estimate conditional variances
Covariate imbalance in randomized experiments

PROBLEM: In finite samples, there is a probability of bad covariate balance between treatment groups

- Bad imbalance on important covariates:
 - → Imprecise estimates of treatment effects
 - → Conditional bias
Some theoretical results about blocking

- Blocking cannot hurt the precision of the estimator:
 - if no worse than random matching
 - if sample from an infinite super population

- Post-Stratification and regression adjustment can decrease the precision of the estimator

- Blocking may increase the estimated variance. But this is specific to the estimator used (degrees of freedom). e.g., randomization inference solves the problem.
Adjustment and covariate imbalance

- **Post-stratification** [Miratrix, Sekhon, and Yu, 2013]:
 - Group similar units together after *after* randomization
 - SATE/PATE results good; *ex post* problems arise
 - Data mining concerns

- **Re-randomization** [Morgan and Rubin, 2012]:
 - Repeat randomly assigning treatments until covariate balance is “acceptable”

- **LESSON**: design the randomization to build in adjustment
Some Current blocking approaches

- Matched-pairs blocking: Pair “most-similar” units together. For each pair, randomly assign one unit to treatment, one to control [Imai, 2008]

- Optimal-greedy blocking [Moore, 2012]
Matched-Pairs

- No efficient way to extend approach to more than two treatment categories
- Fixed block sizes (2 units): design may pair units from different clusters
- Cannot estimate conditional variances [Imbens, 2011]
- Difficulty with treatment effect heterogeneity
- Worse problems with some tests—e.g., rank sum
Blocking by minimizing the Maximum Within-Block Distance (MWBD)

- Experiment with n units and r treatment categories
- Select a threshold $t^* \geq r$ for a minimum number of units to be contained in a block
- Block units so that each block contains at least t^* units, and so that the maximum distance between any two units within a block—the MWBD—is minimized
- Threshold t^*: Allows designs with multiple treatment categories, multiple replications of treatments within a block
A simple example:

Threshold $t^* = 2$. Distance = Mahalanobis distance.
A simple example:

Threshold $t^* = 2$. Distance = Mahalanobis distance.
A simple example:

Threshold $t^* = 2$. Distance = Mahalanobis distance.
A simple example:

Threshold $t^* = 2$. Distance = Mahalanobis distance.

Matched-Pair Blocking

Minimize Maximum Distance

Maximize Within-Block Distance
Motivation

Blocking and graph theory

Approximately optimal blocking algorithm

Estimation of treatment effects

References

Optimal blocking and approximately optimal blocking

- For all blockings that contain at least \(t^* \) units:

 - Let \(\lambda \) denote the smallest MWBD achievable by such a blocking—any blocking that meets this bound is called an optimal blocking.

 - Finding an optimal blocking is an NP-hard problem—feasible to find in small experiments, may not be feasible in large experiments [Hochbaum and Shmoys, 1986].

 - We now show that finding a blocking with MWBD \(\leq 4\lambda \) is possible in polynomial time.
Viewing experimental units as a graph

- Use an idea from Paul Rosenbaum [1989]: Matching problems can be viewed as graph theory partitioning problems

- Experimental units are vertices in a graph

- An edge is drawn between two units if they can be placed in the same block

- Edge-weights are some measure of distance between pretreatment covariates (e.g. Mahalanobis distance)
Distance = Mahalanobis distance.

Heights and Weights for 12 Subjects

Optimal blocking
Viewing experimental units as a graph: In pictures

Distance = Mahalanobis distance.

Units as a graph
Distance $= \text{Mahalanobis distance.}$

Units as a graph

Viewing experimental units as a graph: In pictures
Distance = Mahalanobis distance.

Units as a graph
Notation:

- A graph G is defined by its vertex set V and its edge set E: $G = (V, E)$
- Vertices in V denoted by $\{i\}$; n units $\rightarrow n$ vertices in V
- Edges in E are denoted by (i, j)
- A \textit{complete} graph has an edge $(i, j) \in E$ between every two distinct vertices $\{i\}, \{j\} \in V$; $\frac{n(n-1)}{2}$ edges overall
- The weight of edge $(i, j) \in E$ is denoted by w_{ij}: at most $\frac{n(n-1)}{2}$ distinct values of w_{ij}
Note about edge weights

- If our concern is covariate balance, natural choices for edge weights measure distance between block covariates—e.g., Mahalanobis, L^1, L^2, distances.

- Our method only requires weights to satisfy the triangle inequality: for any distinct vertices $\{i\}, \{j\}, \{k\}$,

$$w_{ik} + w_{kj} \geq w_{ij}$$

Optimal blocking
A simple example:

Threshold $t^* = 2$. Distance = Mahalanobis distance.

Minimize Maximum Distance

Maximum Within-Block Distance

Optimal blocking
Optimal blocking as a graph partitioning problem

- A partition of V is a division of V into disjoint blocks of vertices (V_1, V_2, \ldots, V_ℓ).

- Blocking of units \leftrightarrow Partition of a graph:
 Two units are in the same block of the blocking if and only if their corresponding units are in the same block of the partition.

- Optimal blocking problems are optimal partitioning problems:
 we want to find a partition $(V_1^*, V_2^*, \ldots, V_\ell^*)$ with $|V_j^*| \geq t^*$ that minimizes the maximum within-block edge weight.
Bottleneck subgraphs

- Bottleneck subgraphs helpful for solving partitioning problems

- Define the *bottleneck subgraph for maximum weight of w* as the graph that has \((i, j) \in E_w\) if and only if \(w_{ij} \leq w\)

- At most \(\frac{n(n-1)}{2}\) different edge weights \(w_{ij}\) → At most \(\frac{n(n-1)}{2}\) different bottleneck subgraphs

- All points within a block of our approximately optimal blocking are connected by some path of edges in a bottleneck subgraph; used to show approximate optimality
Bottleneck subgraph: In pictures

Complete graph

Units as a graph

Optimal blocking
Bottleneck subgraph: In pictures

Bottleneck subgraph of weight 5

Bottleneck graph: Weight = 5
Bottleneck subgraph: In pictures

Bottleneck subgraph of weight 3

Bottleneck graph: Weight = 3
Bottleneck subgraph: In pictures

Bottleneck subgraph of weight 3

Bottleneck graph: Weight = 3

Path of 3 edges from Point A to Point B
Approximate algorithm outline:

- Find the bottleneck subgraph of “appropriate” weight
 - can use k-nearest neighbor graph

- Select block centers that are “just far enough apart”

- Grow from these block centers to obtain an approximately optimal partition—and thus, an approximately optimal blocking

- Approach closely follows Hochbaum and Shmoys [1986]
Algorithm step-by-step: Find bottleneck graph

- Find smallest weight threshold λ^- such that each vertex in the corresponding bottleneck subgraph is connected to at least $t^* - 1$ edges.
- Can show that $\lambda^- \leq \lambda$, where λ is the smallest MWBD possible.
- Bottleneck subgraph can be constructed in polynomial time.

$t^* = 2$

Bottleneck graph: Weight = 0.24
Algorithm step-by-step: Find block centers

- Find a set of vertices—*block centers*—such that:
 - There is no path of two edges or less connecting any of the vertices in the set.
 - For any vertex not in the set, there is a path of two edges or less that connects that vertex to one in the set.
- Any set will do, but some choices of centers are better.
Algorithm step-by-step: Grow from block centers

- Form blocks comprised of a block center plus any vertices connected to that center by a single edge.
- The way our block centers were chosen (no path of two edges connects two block centers), these blocks will not overlap.
- At this point, these blocks contain at least t^* units (by edge connection criterion).
Algorithm step-by-step: Assign all unassigned vertices

- For each unassigned vertex, find the closest block center. Add that vertex to the center’s corresponding block.
- The way our block centers were chosen, all unassigned vertices are at most a path of two edges away from a block center.
Our approximate algorithm came up with the following blocking:
A simple example:

Threshold $t^* = 2$. Dissimilarity = Mahalanobis distance.
Algorithm is guaranteed to obtain a blocking with MWBD ≤ 4λ, though does much better than that in practice.
Sketch of proof of approximate optimality

- Algorithm is guaranteed to obtain a blocking with \(\text{MWBD} \leq 4\lambda \), though does much better than that in practice.
- Sketch of proof:
 - Each vertex is at most a path of two edges away from a block center \(\Rightarrow \)
 - In the worst case: two vertices \(\{i\}, \{j\} \) in the same block can be connected by a path of four edges in the bottleneck subgraph (two from vertex \(\{i\} \) to the block center, two from the block center to vertex \(\{j\} \)).
Sketch of proof cont’d

- Each vertex is at most a path of two edges away from a block center \Rightarrow
 In the worst case: two vertices $\{i\}, \{j\}$ in the same block can be connected by a path of four edges in the bottleneck subgraph (two from vertex $\{i\}$ to the block center, two from the block center to vertex $\{j\}$).

- In worst case: $(i, k_1), (k_1, k_2), (k_2, k_3), (k_3, j)$ is a path of four edges connecting $\{i\}$ to $\{j\}$.

- Each edge has weight at most $\lambda^- \Rightarrow$
 The corresponding edge weights satisfy:

$$w_{ik_1} + w_{k_1k_2} + w_{k_2k_3} + w_{k_3j} \leq 4\lambda^- \leq 4\lambda.$$
Since edge weights satisfy the triangle inequality:

\[w_{ik} + w_{kj} \geq w_{ij} \]

it follows that

\[w_{ij} \leq w_{ik_1} + w_{k_1 k_2} + w_{k_2 k_3} + w_{k_3 j} \leq 4\lambda^- \leq 4\lambda. \]
Sketch of proof cont’d

- Since edge weights satisfy the triangle inequality:
 \[w_{ik} + w_{kj} \geq w_{ij} \]
 it follows that
 \[w_{ij} \leq w_{ik_1} + w_{k_1 k_2} + w_{k_2 k_3} + w_{k_3 j} \leq 4\lambda^- \leq 4\lambda. \]
 - That is, every edge joining two vertices within the same block has weight \(\leq 4\lambda \).
 - The maximum within-block distance of the approximately optimal blocking is \(\leq 4\lambda \).
 - QED
Some final remarks about algorithm:

- Algorithm does not contain any inherently random components.
- Quick, local changes to the approximately optimal blocking may improve the blocking. (e.g., divide large blocks into smaller blocks, swap units between blocks)
The Neyman-Rubin potential outcomes framework assumes the following model for response [Splawa-Neyman, Dabrowska, and Speed, 1990, Rubin, 1974]:

\[Y_{kc} = y_{k1} T_{k1} + y_{k2} T_{k2} + \cdots + y_{kr} T_{kr}. \]

- \(Y_{kc} \): Observed response of \(k \)th unit in block \(c \).
- \(y_{kct} \): Potential outcome of the unit under treatment \(t \).
- \(T_{kct} \): Treatment indicators. \(T_{kct} = 1 \) if the unit receives treatment \(t \), \(T_{kct} = 0 \) otherwise.
Parameters of interest and estimators

- Parameters of interest: Sample average treatment effect of treatment s relative to treatment t (SATE_{st}):

$$\text{SATE}_{st} = \sum_{c=1}^{b} \sum_{k=1}^{n_c} \frac{y_{kcs} - y_{kct}}{n}$$

- Two unbiased estimators of SATE_{st} are the difference-in-means estimator and the Horvitz-Thompson estimator.

$$\hat{\delta}_{st,\text{diff}} \equiv \sum_{c=1}^{b} \frac{n_c}{n} \sum_{k=1}^{n_c} \left(\frac{y_{kcs}}{\# T_{cs}} - \frac{y_{kct}}{\# T_{ct}} \right)$$

$$\hat{\delta}_{st,\text{HT}} \equiv \sum_{c=1}^{b} \frac{n_c}{n} \sum_{k=1}^{n_c} \left(\frac{y_{kcs} T_{kcs}}{n_c/r} - \frac{y_{kct} T_{kct}}{n_c/r} \right)$$

- Assume complete randomization of treatment, r divides n_c.
Variance of estimators

\[\text{Var}(\hat{\delta}_{st,\text{diff}}) = \text{Var}(\hat{\delta}_{st,\text{HT}}) \]

\[= \sum_{c=1}^{b} \frac{n_c^2}{n^2} \left(\frac{r - 1}{n_c - 1} (\sigma_{cs}^2 + \sigma_{ct}^2) + 2 \frac{\gamma_{cst}}{n_c - 1} \right) \]

\[\mu_{cs} = \frac{1}{n_c} \sum_{k=1}^{n_c} y_{kcs} \]

\[\sigma_{cs}^2 = \frac{1}{n_c} \sum_{k=1}^{n_c} (y_{kcs} - \mu_{cs})^2 \]

\[\gamma_{cst} = \frac{1}{n_c} \sum_{k=1}^{n_c} (y_{kcs} - \mu_{cs})(y_{kct} - \mu_{ct}) \]
Variance of estimators

\[
\text{Var}(\hat{\delta}_{st,\text{diff}}) = \text{Var}(\hat{\delta}_{st,\text{HT}}) = \sum_{c=1}^{b} \frac{n_c^2}{n^2} \left(\frac{r-1}{n_c-1} (\sigma_{cs}^2 + \sigma_{ct}^2) + 2 \gamma_{cst} \frac{n}{n_c-1} \right)
\]

- Note: \(\sigma_{cs}^2\) and \(\sigma_{ct}^2\) are estimable, \(\gamma_{cst}\) not directly estimable.
- Conservative estimate:

\[
\hat{\text{Var}} = \sum_{c=1}^{b} \frac{n_c^2}{n^2} \left(\frac{2(r-1)}{n_c-1} (\hat{\sigma}_{cs}^2 + \hat{\sigma}_{ct}^2) \right)
\]

- Small differences for more general treatment assignments.
When does blocking help?

- Blocking vs. completely randomized treatment assignment (no blocking): which estimates of $SATE_{st}$ have lower variance?
- Blocking helps if and only if:

$$\sum_{c=1}^{b} n_c^2 \left[\frac{(r-1)(\sigma_s^2 + \sigma_t^2) + 2\gamma_{st}}{\sum n_c^2(n-1)} \right] - \left(\frac{(r-1)(\sigma_{cs}^2 + \sigma_{ct}^2) + 2\gamma_{cst}}{n^2(n_c-1)} \right) \geq 0$$

- Intuitive to make $\sigma_{cs}^2, \sigma_{ct}^2$ small w.r.t. σ_s^2, σ_t^2, but other blocking designs may also improve treatment effect estimates.
Can blocking hurt?

- When blocking is completely randomized:

\[
\mathbb{E} \left[\sum_{c=1}^{b} n_c^2 \left(\frac{(r - 1)(\sigma_{cs}^2 + \sigma_{ct}^2) + 2\gamma_{cst}}{n^2(n_c - 1)} \right) \right] = \sum_{c=1}^{b} n_c^2 \left(\frac{(r - 1)(\sigma_s^2 + \sigma_t^2) + 2\gamma_{st}}{\sum n_c^2(n - 1)} \right)
\]

Blocked variance = Completely randomized variance

- Any improvement to completely random blocking → Reduced variance in treatment effect estimates.

Optimal blocking
Future Work

• Apply graph partitioning techniques to other statistical problems:
 • Clustering—alternative to k-means.
 • Apply to matching problems.
 • Other problems in nonparametric statistics.

• Improve theoretic results of algorithm.

