Section 3: Permutation Inference

Yotam Shem-Tov

Fall 2014
Throughout this slides we will focus only on randomized experiments, i.e the treatment is assigned at random.

We will follow the notation of Paul Rosenbaum and the book *Observational Studies*, which is highly recommended.
The test of the null hypothesis of no treatment effect is **distribution** and **model** free!

The key elements in Fishers argument are:

1. For a valid test of no treatment effect on the units included in an experiment, it is sufficient to require that treatments be allocated at random to experimental units - these units may be both heterogeneous in their responses and not a sample from a population.

2. Probability enters the experiment only through the random assignment of treatments, a process controlled by the experimenter.
As with any statistical test of hypotheses, we need the following elements:

1. Data
2. Null hypothesis
3. Test statistic
4. The distribution of the test statistic under the null hypothesis
Using Rosenbaums notation: there are N units divided into S strata or blocks, which are formed on the basis of pre-treatment characteristics.

There are n_s units in stratum s for $s = 1, \ldots, S$ so

$$N = \sum_{s=1}^{S} n_s$$

Define Z_{si} as an indicator variable whether the ith unit in stratum s receives treatment or control. If unit i in stratum s receives treatment, $Z_{si} = 1$ and if the unit receives control, $Z_{si} = 0$.

Define m_s as the number of treated units in stratum s, so

$$m_s = \sum_{i=1}^{n_s} Z_{si}, \text{ and } 0 \leq m_s \leq n_s$$
Definitions: Unit

- We will simplify the notation and focus on the case in which there is only one strata, i.e. \(S = 1 \) and \(N = n_s \). The number of treated units is \(m = \sum_{i=1}^{N} Z_{si} \).

- What is a unit?
 Answer: A unit is an opportunity to apply or withhold the treatment.

- A unit may be a person who will receive either the treatment or the control.

- A group of people may form a single unit: all children in a particular classroom or school.

- A single person may present several opportunities to apply different treatments, in which case each opportunity is a unit.
Notation

- Let \(r = (r_1, \ldots, r_N) \) be the vector of observed responses
- Let \(\Omega \) be the set containing all possible treatment assignments
- Let \(z = (z_1, \ldots, z_N) \) be a treatment assignment, \(z \in \Omega, z_i \in \{0, 1\} \)
The most common assignment mechanism fixes the number treated units, i.e. m in the sample.

The set Ω contains $K = \binom{N}{m}$, possible treatment assignments z.

In the most common experiments, each possible treatment assignment is given the same probability, $Pr(Z = z) = 1/K$ for all z in Ω.

For example when $N = 6$ and $m = 3$:

$$\Omega = \left\{ \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \ldots \right\}.$$
Example 1: \(N = 30 \), given that the number of treated units is \(m = 15 \), how large is \(\Omega \)? Is the allocation of treatment I.I.D?

Answer: \(\text{cov}(T_i, T_j) \neq 0 \), the treatment assignment is not I.I.D

\[
> \text{choose}(30, 15)
\]

\[1\] 155117520

Example 2: \(N = 30 \), the treatment assignment mechanism is, \(T_i \sim Bernulli(p = 1/2) \). How large is \(\Omega \)? Is the allocation of treatment I.I.D?

Answer: The treatment assignment is I.I.D

\[
> 2^{30}
\]

\[1\] 155117520

In example 2, \(\Omega \) is 6.92 times larger than in example 1. We will usually consider the situation in which \(m \) is given
The most common hypothesis associated with randomization inference is the sharp null of no effect for all units.

A unit labeled as treated will have the exact same outcome as a unit labeled as control.

Let r_z be the vector of potential responses for randomization assignment z.

The sharp null hypothesis is that r_z is the same for all z,

$$\forall z \ r_z = r$$

Under the null, the units responses are fixed and the only random element is the meaningless rotation of labels (between control and treatment).
A test statistic $t(Z, r)$ is a quantity computed from the treatment assignment Z and the response r.

Consider the following test statistic: the difference in sample means for the treated and control groups:

$$t(Z, r) = \sum_{i=1}^{N} \left\{ \frac{Z_i r_i}{m} - \frac{(1 - Z_i) r_i}{N - m} \right\} = \frac{\sum_{i=1}^{N} Z_i r_i}{m} - \frac{\sum_{i=1}^{N} (1 - Z_i) r_i}{N - m}$$

and in matrix notation,

$$t(Z, r) = \frac{Z^T r}{Z^T 1} - \frac{(1 - Z)^T r}{(1 - Z)^T 1}$$

Why is Z in a capital letter and r not? To indicate that under the null Z is a random variable and r is fixed.
Hypothesis testing

- The hypothesis test of the sharp null,

\[H_0 : r_z = r \]

\[H_1 : r_z \neq r \]

- We seek the probability of a value of the test statistic as extreme or more extreme than observed, under the null hypothesis.

- In order to calculate the P-value, we need to know (or approximate) the distribution of the test statistic.

- The treatment assignment \(Z \) follows a known randomization mechanism which we can simulate or exhaustively list.
Let T be the observed value of this test statistic. Suppose we would like to reject the null for large values of T. The p-value is,

$$Pr_{H_0}(t(Z, r) \geq T) = \sum_{z \in \Omega} I[t(z, r) \geq T] Pr_{H_0}(Z = z)$$

where $I[t(z, r) \geq T]$ is an indicator whether the value of the test statistic under the treatment assignment z is higher than the observed test statistic, T

Under the null, H_0, the treatment has no effect and hence r is fixed regardless of the assignment z
Calculating significant level (P value)

In the case that all treatment assignments are equally likely, $Pr_{H_0}(Z = z) = \frac{1}{|\Omega|}$ and,

$$Pr_{H_0}(t(Z, r) \geq T) = \frac{\sum_{z \in \Omega} I[t(z, r) \geq T]}{|\Omega|}$$

$$= \frac{|\{z \in \Omega : t(z, r) \geq T\}|}{|\Omega|}$$

The indicator variable $I[t(z, r) \geq T]$ is a random variable which is distributed, $B(n = 1, \text{prob} = P_{H_0}(I[t(z, r) \geq T]))$ (Bernoulli distribution)

$$\frac{|\{z \in \Omega : t(z, r) \geq T\}|}{|\Omega|} = \frac{1}{|\Omega|} \sum_{Z \in \Omega} I[t(Z, r) \geq T] = \mathbb{E}(I[t(z, r) \geq T])$$
Calculating significant level (\(P\)-value)

When \(\Omega\) is small we can exhaustively go over all the elements in \(\Omega\) and calculate, \(|\{z \in \Omega : t(z, r) \geq T\}|\) - as in the Lady tasting tea example.

How can we calculate the \(P\)-value when \(\Omega\) is too large to enumerate all possible treatment assignments?

1. Use a Monte-Carlo approximation

2. Use an asymptotic approximation for the distribution of the test statistic
Monte-Carlo approximation: step-by-step

1. Draw a SRS (simple random sample) of size m from the data and call it X (the treatment group), and call the rest of the data Y (the control group).

2. Compute the test statistic, $t(Z, r)$, as you would if X and Y would have been the originals data, denote this test statistic by $t^b(Z, r)$.

3. Repeat this procedure B times (many times), saving the results, so you have:

 $$t^1(Z, r), t^2(Z, r), t^3(Z, r), \ldots, t^B(Z, r)$$

4. The distribution of $t^b(Z, r)$ approximates the true distribution of $t(Z, r)$ under the null (the sharp null).

 In particular, a p-value can be computed by using,

 $$\frac{1}{B} \times \#\{b : t^b(z, r) \geq T\}$$
Monte-Carlo approximation: Theory

- Recall $P_{H_0}(I[t(z, r) \geq T]) = \mathbb{E}(I[t(z, r) \geq T])$

- The intuitive estimator for the *P-value* is the proportion of times the indicator variable receives a value of 1 in the Monte-Carlo simulation:

$$\hat{P\text{-value}} = \hat{\mathbb{E}}(I[t(z, r) \geq T]) = \frac{1}{B} \sum_{b=1}^{B} I[t^b(z, r) \geq T]$$

where B is the number of samples
Example of permutation inference

- We want to compare \(x_1 \) and \(x_2 \), denote \(x_2 \) as the treatment group and \(x_1 \) as the control group. The treatment was allocated randomly.

```r
> set.seed(13)
> x1 = rexp(1000, rate=0.6)
> x2 = rexp(1000, rate=0.5)

The observed difference in means is,

```r
> mean(x2) - mean(x1)
[1] 0.4204367
```

- In order to calculate a significant level we need to know (or approximate) the distribution of \( t(Z, r) \) under the null.
In this case the size of $\Omega$ is large and we cannot go over all the elements of $\Omega$.

> choose(200,100)

[1] 9.054851e+58

We will use Monta-Carlo simulations. The R code is bellow,

```R
f.permute = function(){
 id = sample(c(1:length(x)),length(x2))
 t0= rep(0,length(x))
 t0[id]=1
 statistic0 = mean(x[t0==1])-mean(x[t0==0])
 return(statistic0)
}

stat.permutation = replicate(10000,f.permute())
```

What is $B$ in the code? $B = 10000$
Example continue

Permutation distribution

Value of test statistic

Frequency

-0.4 -0.2 0.0 0.2 0.4

0 500 1000 1500

Observed value
Example continue

Should we reject the null if we would have observed the green line?

![Permutation distribution](image)

- Hypothetical observed value
- Observed value

Value of test statistic

Frequency

-0.4  -0.2  0.0  0.2  0.4

0  500  1000  1500
What is the \( P\)-value?

A one sided \( P\)-value needs to specify if we are looking for extreme values from the right or the left, \( Pr_{H_0}(t(Z, r) \geq T) \) or \( Pr_{H_0}(t(Z, r) \leq T) \)

**Solutions:**

1. Choose the lowest option, and double the \( P\)-value by 2 (Bonferroni correction):

\[
P - value = \min [Pr_{H_0}(t(Z, r) \geq T), Pr_{H_0}(t(Z, r) \leq T)] \times 2
\]
Solutions:

2. Adjust the test statistic in a way which will make us want to reject the null only for extreme values from one side (this is not always possible).

In our case we re-define \( t(Z, r) \) as, \[ \left| \frac{Z^T r}{Z^T 1} - \frac{(1-Z)^T r}{(1-Z)^T 1} \right| \], i.e the absolute difference in means.

![Permutation distribution diagram]

- Observed value
The Wilcoxon rank sum test is one of the most commonly used non-parametric tests.

Let \( q = (q_1, q_2, \ldots, q_N) \) be the ranks of the responses \( r \).

The test statistic is the sum of the ranks of the treated units,

\[
t(Z, r) = W = Z^T q = \sum_{i=1}^{N} Z_i q_i
\]

where \( q_i = \text{rank}(r_i) \).

WRST is usually used to test for differences in means between two distributions. It has a lower power detecting differences in the variance (when the means are similar).
Consider the same data as in the previous example. The code below calculates the permutation distribution, and observed statistic for the WRST,

\[ q = \text{rank}(x) \]

```r
def.permute = function()
{
 id = sample(c(1:length(x)),length(x2))
 t0= rep(0,length(x))
 t0[id]=1
 statistic0 = sum(q[t0==1])
 return(statistic0)
}
stat.permutation = replicate(10000,f.permute())
statistic.obs = sum(q[t==1])
```
The permutation distribution is,
The *P-value* (two-sided hypothesis test) is,

\[
P - value = \min \left[ Pr_{H_0}(t(Z, r) \geq W), Pr_{H_0}(t(Z, r) \leq W) \right] \times 2
\]

\[
= \frac{1}{10000 + 1} \times 2 = 0.00019998
\]

The implementation in *R*:

`wilcox.test()`
The KS test is used to detect differences between two distributions, it can detect differences in other moments except the expectations, such as the variance or quantiles.

The hypothesis test to have in mind is,

\[ H_0; \ F_x = F_y \]

\[ H_0; \ F_x \neq F_y \]

The KS test statistic is the largest difference between the CDF’s of group \( x \) and group \( y \),

\[ D = \max_w |F_x(w) - F_y(w)| \]
The CDF is not a known function and needs to be approximated. We use the empirical CDF which is defined as,

\[
\hat{F}_x(w) = \frac{\#\{x \leq w\}}{n_x}
\]

Consider the following example:

```r
set.seed(16)
x=rnorm(50,mean=2,sd=1)
y=rnorm(100,mean=2,sd=2)

The emperical CDF:
Fx = function(w,x){
 return(sum(x<=w)/length(x))
}
```
What do you think will be the results using WRST? Will a T-test detect the difference in distributions? What is the null in a T-test? Are the assumption in a T-test satisfied?
Welch Two Sample t-test

data: x and y
t = 0.9403, df = 144.938, p-value = 0.3486
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.2573415 0.7244316
sample estimates:
mean of x mean of y
2.157051 1.923506

Wilcoxon rank sum test with continuity correction

data: x and y
W = 2706, p-value = 0.4126
alternative hypothesis: true location shift is not equal to 0
KS statistic:  
D = 0.25
KS test – Binary variables

One sided P-value: 0.02
Should we reject the null if we observe the green line?

KS test – Binary variables

One sided P-value: 0.02
Mr. Sceptical argued that the KS test has low power when considering binary distributions (Bernoulli), and suggested using the difference in means instead (difference in proportions). What do you think?

Answer: The tests are the same! When the two distributions under comparison are both Bernoulli, the null of the KS test is, $H_0: P_x = P_y$ and the test statistic becomes.

$$D = \hat{P}_x - \hat{P}_y$$

Example:

```r
set.seed(14)
x=rbinom(50,size=1,prob=0.5)
y=rbinom(100,size=1,prob=0.7)
```
Kolmogorov-Smirnov: Binary variables

KS statistic: 0.14

Y CDF
X CDF

Yotam Shem-Tov
STAT 239/ PS 236A
Kolmogorov-Smirnov: Binary variables

KS test – Binary variables

One sided P-value: 0.402
Kolmogorov-Smirnov: Binary variables

Welch Two Sample t-test

data:  x and y
t = -1.6926, df = 88.688, p-value = 0.09404
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -0.30435636   0.02435636
sample estimates:
mean of x  mean of y
       0.60       0.74
Examples of permutation inference

- Is there an association between paling against each other in the World-Cup and military conflict?
- The paper in the link below tries to answer this question using permutation inference. This is a nice and simple example of permutation inference is, http://www.andrewbertoli.org/wp-content/uploads/2013/02/Direct-Sports-Competition.pdf